Automatic Detection and Localization of Surface Cracks in Continuously Cast Hot Steel Slabs Using Digital Image Analysis Techniques
نویسندگان
چکیده
Quality inspection is an indispensable part of modern industrial manufacturing. Steel as a major industry requires constant surveillance and supervision through its various stages of production. Continuous casting is a critical step in the steel manufacturing process in which molten steel is solidified into a semi-finished product called slab. Once the slab is released from the casting unit, the surface often has longitudinal or transverse cracks. Being exposed to air, the crack surfaces oxidize and do not weld during rolling. The early detection of these defects on the slab saves significant time, effort and production expense, reduces costs, and prevents wasted processing steps and rolling mill faults. Traditionally, the inspection process has been carried out visually through human inspectors. However, human inspection is subjective, error-prone, tedious and time consuming. This paper presents an initial study to validate the feasibility of automated inspection of continuously cast hot slabs using computer vision techniques. An automated inspection system such as the one described in this paper can inspect a slab coming out of a caster while it is still hot. The image processing techniques applied in this work including wavelet transform, morphological operations, edge detection and clustering are time-efficient and simply applicable in industrial applications which demand online computations. The experimental results with 97.0% sensitivity and 96.0% specificity demonstrated that the proposed algorithm was effective and reliable. To the best of our knowledge, this is the first time that such a computerized algorithm has been applied in Iran’s steel industry for quality inspection of continuously cast hot slabs.
منابع مشابه
Automatic Detection and Localization of Surface Cracks in Continuously Cast Hot Steel Slabs Using Digital Image Analysis Techniques
Quality inspection is an indispensable part of modern industrial manufacturing. Steel as a major industry requires constant surveillance and supervision through its various stages of production. Continuous casting is a critical step in the steel manufacturing process in which molten steel is solidified into a semi-finished product called slab. Once the slab is released from the casting unit, th...
متن کاملThe Effects of Hot Tear Segregations on the Rolled Product Quality of Continuously Cast Steel
The main objective of this project was to investigate the behavior and the damaging effects of hot tear segregations in the continuously cast steel blooms on the final product quality. To achieve this aim, plant data from three different types of steels were used. Investigations using the scanning electron microscope (SEM) equipped with energy dispersive x-ray spectroscopy (EDS) probe and metal...
متن کاملAutomatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique
The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...
متن کاملProcessing Digital Image for Measurement of Crack Dimensions in Concrete
The elements of the concrete structure are most frequently affected by cracking. Crack detection is essential to ensure safety and performance during its service life. Cracks do not have a regular shape, in order to achieve the exact dimensions of the crack; the general mathematical formulae are by no means applicable. The authors have proposed a new method which aims to measure the crack dimen...
متن کاملUsing Finite Point Method for the Numerical Simulation of Heat Transfer Coupled with Microsegregation during Continuous Casting
In the present work, a meshless method called Finite Point Method (FPM) is developed to simulate the solidification process of a continuously cast steel bloom in both primary and secondary cooling regions. The method is based on the use of a weighted least-square interpolation procedure. A transverse slice of the bloom moving at casting speed is considered as the computational domain and two di...
متن کامل